Показать меню Технической информации
Освоение новых модификаторов и технологий модифицирования. Страница 2
В рамках дальнейших работ планируется проведение испытаний отечественного аналога модификатора LametÒ5504 - модификатора ФСМг6Ла0,5 (ОАО «НИИМ», г. Челябинск). Помимо этой работы для изучения влияния РЗМ в модификаторе типа ФСМг для внутриформенного модифицирования ВЧ предполагается проведение экспериментов по испытанию опытного модификатора ФСМг6 с содержанием РЗМ ~1,5% и со строгим ограничением по кальцию - до 0,4%). Концентрации содержания РЗМ и кальция подобраны из следующих соображений.
В составе мишметалла содержится около 50% церия и 25% лантана. Церий из всего ряда РЗМ является наилучшим сфероидизатором графита и при концентрации в модификаторе ~ 0,75% будет дополнительно усиливать действие магния. Лантан имеет явное преимущество перед другими РЗМ в части влияния на позднее образование и рост большого количества парных глобулей вторичного графита. Такая тенденция имеет место при его концентрации в модификаторе 0,25…0,40%, при его содержании меньшем 0,25% эффект ослабевает, а при большем 0,40% - дополнительного усиления эффекта не происходит. При общем содержании РЗМ в модификаторе ~ 1,5% концентрация чистого лантана составляет ~ 0,38% и находится в рекомендуемом диапазоне.
Содержание кальция в магнийсодержащем модификаторе для внутриформенного модифицирования необходимо, по возможности, ограничивать ввиду его шлакообразующей способности. Несмотря на то, что кальций несколько сдерживает активность реакции магния с расплавом, в данном случае его присутствие является нежелательным. Использование вместо кальция РЗМ позволит усилить действие магния и компенсировать его более высокий угар.
Главное преимущество использования смеси РЗМ - более низкая стоимость мишметалла по сравнению со стоимостью чистых РЗМ.
Для первичного графитизирующего модифицирования высокопрочного чугуна используется литейный ферросилиций ФС75л6 (табл. 7) с размером гранул от 3,2 до 10 мм.
Таблица 7. Химический состав ФС75, % масс.
Si
|
C
|
S
|
P
|
Al
|
Mn
|
Cr
|
74…80
|
макс. 0,1
|
макс. 0,02
|
макс. 0,04
|
макс. 3,0
|
макс. 0,4
|
макс. 0,3
|
Графитизирующее модифицирование чугуна заключается в создании в жидком чугуне зародышей графитных включений и стимулировании их роста, а также в равномерном их распределении по объёму чугуна. Это обеспечивается за счёт создания в жидком чугуне концентрационных неоднородностей по кремнию. Процесс зародышеобразования графита усиливается, когда в центры областей с повышенным содержанием кремния ликвируют содержащиеся в модификаторе поверхностно-активные или зародышеобразующие элементы (или и те и другие), которые обеспечивают правильное и равномерное формирование графита.
Литейный 75%-ный ферросилиций содержит около 0,5% кальция - элемента, уменьшающего количество формирующихся карбидов и улучшающего обрабатываемость резанием чугунных отливок. Литейный ферросилиций получил мировое признание как материал, обеспечивающий экономичное модифицирование серых и высокопрочных чугунов. Хотя литейный ферросилиций уменьшает склонность к отбелу в средних и толстых сечениях, он может и не устранить отбел в отливках, имеющих тонкое сечение или в зонах, склонных к быстрому затвердеванию (углы, кромки).
Содержание в используемом ферросилиции других активных элементов как барий, стронций, цирконий, РЗМ чрезвычайно мало, в результате чего эффект модифицирования проявляется недостаточно эффективно. Поэтому для полноценного модифицирования расплава чугуна необходимо существенно увеличивать навеску модификатора.
Новые графитизирующие модификаторы уже содержат в своём составе необходимое количество активных щелочно- или редкоземельных металлов. Это позволяет получать требуемые характеристики структуры и свойств чугуна в отливках, используя меньшее количество модификатора. Для повышения инокулирующего действия является необходимым увеличение суммарной площади поверхности модификатора путём уменьшения размера его фракции. Наиболее эффективные модификаторы сводят до минимума степень переохлаждения в процессе затвердевания отливок как в тонких сечениях, так и в сечениях средней толщины. В настоящее время в чугунолитейном производстве ОАО «АВТОВАЗ» готовятся к проведению опытные работы по освоению и внедрению таких эффективных модификаторов для ковшевой графитизирующей обработки как Barinok (табл. 8) (ф. Элкем, Норвегия) и ФС65Ба4 (табл. 9) (ОАО «НИИМ», г. Челябинск) фракцией 1…5 мм на всей номенклатуре деталей из серого и высокопрочного чугунов. Параллельно запланированы испытания модификатора-аналога производства NPPCompany, г. Челябинск - SibarÒ4 (табл. 10) фракции 1…5 мм.
Для дальнейшего изучения эффективности влияния бария как активной добавки в модификаторе на основе ферросилиция планируется проведение испытаний модификатора SibarÒ22 (NPPCompany, г. Челябинск) (табл. 11) по следующим схемам:
- при использовании крупки SibarÒ22 фракции 1…5 мм совместно с ФС75л6 фракции 3,2…10 мм для первичной графитизирующей ковшевой обработки расплава чугуна ожидается существенное снижение расхода ферросилиция и полное исключение вторичного модифицирования;
- при использовании куска SibarÒ22 массой 200 г для вторичного модифицирования в литниковой чаше формы и повышении содержания кремния в печи ожидания является возможным значительное снижение расхода графитизирующего модификатора для первичной графитизирующей ковшевой обработки расплава чугуна или даже её исключение; в данном случае введение активного элемента из модификатора в расплав происходит при температурах, близких к солидусу, что до минимума снижает его окисляемость и возможную ликвацию.
Таблица 8. Химический состав модификатора BarinokÒ, % масс.
Si
|
Ba
|
Ca
|
Al
|
Fe
|
72…78
|
2,0…3,0
|
1,0…2,0
|
макс.1,0
|
ост.
|
Таблица 9. Химический состав модификатора ФС65Ба4, % масс.
Si
|
Ba
|
Mn
|
Al
|
Fe
|
62…70
|
2,0…4,0
|
макс. 0,4
|
макс. 3,0
|
ост.
|
Таблица 10. Химический состав модификатора SibarÒ4, % масс.
Si
|
Ba
|
Ca
|
Al
|
Fe
|
65…75
|
3,5…5,0
|
макс. 1,5
|
макс. 2,0
|
ост.
|
Таблица 11. Химический состав модификатора SibarÒ22, % масс.
Si
|
Ba
|
Ca
|
Al
|
Fe
|
45…60
|
20…25
|
макс. 3,0
|
макс. 3,0
|
ост.
|
Вторичное графитизирующее модифицирование высокопрочного чугуна производится в заливочной чаше формы куском ФС75л3 массой 150…200 г или брикетом из ФС65Ба1 массой 170…220 г из фракции -1 мм. Следует отметить, что технология изготовления брикетов из ферросилиция с добавками активных элементов является как ресурсосберегающей, так как при этом используются отходы основного производства, так и энергосберегающей - в результате ухода от переплава и связанных с этим потерь активных элементов, а также угара и спекания пылевидной фракции. Получение брикетов осуществляется прессованием в специально подготовленную форму, в результате чего они имеют фиксированную массу и постоянное сечение. Основной сложностью является получение кускового ферросилиция постоянной массы и одинакового сечения, а для брикетов - их стабильное растворение из-за сложности чёткого дозирования наполнителей, вступающих в экзотермическую реакцию - жидкого стекла и плавикового шпата (CaF2), связывающих пылевидный ферросилиций. В связи с тем, что технология вторичного модифицирования брикетированными графитизирующими модификаторами признаётся более эффективной как с технической, так и с экономической точек зрения, вышеуказанные недостатки устраняются при строгом нормировании и дозированном вводе составляющих компонентов.
Усовершенствованной технологией вторичного графитизирующего модифицирования является использование литых или брикетированных внутриформенных вставок, изготовленных на основе ферросилиция с добавками щелочно- или редкоземельных элементов с применением растворяющегося связующего или без него. Такие вставки сохраняют преимущества брикетов для модифицирования в чаше - имеют фиксированную массу и постоянное сечение. При правильном размещении вставки модификатора внутри литейной формы обеспечивается его полное растворение без всплывания. Для исключения попадания нерастворившихся остатков модификатора внутрь формы и, тем самым, засорения тела отливки, вставка размещается перед пенокерамическим фильтром. При введении в состав вставки помимо кремния других эффективных, стимулирующих графитообразование, элементов становится возможным снижение веса модифицирующей вставки. На снижение веса также влияет то обстоятельство, что модификатор расходуется только на модифицирование части элементов литниковой системы - пространства, занимаемого полостью отливок, прибылями и питателями, а стояк и литниковая чаша остаются немодифицированными. Применение вставок на основе ферросилиция для графитизирующего модифицирования в форме высокопрочного чугуна позволяет значительно улучшать форму шаровидного графита при постепенном снижении содержании магния в расплаве, то есть при старении эффекта модифицирования, уменьшать размер и обеспечивать равномерное распределение сфероидов графита по объёму металлической матрицы, предупреждать появление цементита и повышать механические свойства чугуна в литом состоянии.
Планируется проведение испытаний внутриформенных стержнеобразных прессованных вставок производства ОАО «Белтехнолит» (табл. 12, рис. 9) и литых вставок ElcastÒD (ф. Элкем, Норвегия) (табл. 13, рис. 10).
Таблица 12. Химический состав вставок ОАО «Белтехнолит», % масс, не более.
Si
|
Al
|
Ca
|
C
|
Fe
|
Sr
|
Zr
|
РЗМ
|
Ba
|
Mg
|
Ta, Nb, W, Co, Ti
|
75
|
2
|
3
|
10
|
30
|
2
|
10
|
15
|
5
|
8
|
10
|
Таблица 13. Химический состав вставок ElcastÒD, % масс.
Si
|
Ca
|
Al
|
Fe
|
70…78
|
0,5…1,2
|
2,5…3,5
|
ост.
|
![]() |
Рис. 9. Внешний вид стержнеобразной внутриформенной вставки для графитизирующего вторичного модифицирования производства ОАО «Белтехнолит».
|
![]() |
Рис. 10. Внешний вид литой внутриформенной вставки ElcastÒD для графитизирующего вторичного модифицирования производства ф. Элкем, Норвегия.
|
Таким образом, главная цель, преследуемая при проведении опытных работ по внепечной обработке чугуна - внедрение эффективных технологий модифицирования и модифицирующих материалов для повышения качества чугуна в отливках при параллельном снижении затрат.